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Abstract: Complex sulfide ores are usually found as a mixture of various sulfide and gangue minerals, 
and froth flotation is the predominant method for the selective separation of sulfide minerals. 
Adherence and contact between sulfide minerals are inevitable during froth flotation, and galvanic 
interactions between sulfide minerals will occur because of differences in rest potentials. However, the 
effect of these galvanic interactions on the selective flotation of sulfide minerals have been rarely 
studied. In this work, the effect of the galvanic interaction between pyrite and sphalerite on the flotation 
behavior and surface characteristics of pyrite was investigated by micro-flotation tests, collector 
adsorption tests, electrochemical techniques and XPS (X-ray photoelectron spectroscopy) surface 
analysis. The micro-flotation tests indicated that the floatability of pyrite decreased in the pH range of 
4.0 to 9.5 and increased under strongly alkaline pH conditions (pH > 10) due to the galvanic interaction. 
The collector adsorption results demonstrated that the adsorption capacity of the collector on the pyrite 
surface was significantly reduced because of the galvanic interaction between pyrite and sphalerite. The 
electrochemical measurements revealed that the decrease in the oxidation current of xanthates to 
dixanthogen was responsible for the decreasing adsorption capacity of the collector on the pyrite 
surface. The XPS results indicated that the formation of the S"O$"%  oxidation product on the pyrite 
surface decreased at a strongly alkaline pH due to the galvanic interaction. Therefore, pyrite floatability 
improved at an alkaline pH. These results consistently showed that the galvanic interaction between 
pyrite and sphalerite had an important influence on the floatability and surface characteristics of pyrite. 
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1. Introduction 

Sulfide minerals such as chalcopyrite, galena, and sphalerite are the most important raw materials in 
the production of Cu, Pb, and Zn metals. In nature, these sulfide minerals are generally found as a 
complex mixture that cannot be directly utilized by the metallurgical industry (Urbano et al., 2007; Shen 
et al., 2019). Therefore, the beneficiation of sulfide minerals is usually necessary prior to metallurgical 
treatment, and froth flotation is the predominant method for the beneficiation of sulfide minerals in 
industrial practice (Hu et al., 2020). In froth flotation, sulfide minerals are selectively separated from 
gangue minerals based on the difference in their surface hydrophobic/hydrophilic characteristics (Reis 
et al., 2019). Pyrite, as a common sulfide gangue mineral, is widely intergrown with these valuable 
sulfide minerals. In froth flotation, pyrite has a similar floatability as these sulfide minerals, which leads 
to difficulty in the selective separation of sulfide minerals from pyrite (Hu et al., 2000; Mu et al., 2016a; 
Ejtemaei and Nguyen, 2017). To depress pyrite in froth flotation, an abundance of lime is used as the 
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depressant. Pyrite is strongly hydrophilic under strongly alkaline pH conditions due to the formation 
of ferric hydroxides and sulfur-oxygen species on its surface (Chandra et al., 2012; Huang et al., 2013; 
Mu et al., 2016b; Zanin et al., 2019). 

However, the selective flotation of sulfide minerals is extremely difficult when ores have a high 
pyrite content. For example, the Yiliang Pb–Zn ore in Yunnan Province of Southwest China is regarded 
as the richest Pb–Zn ore in China. The grades of Pb, Zn, and S in this ore is 7.8%, 18.4%, and 34.8%, 
respectively, and the pyrite content in this ore reaches approximately 51.3%. After flotation 
beneficiation, the recovery of Zn and Pb in concentrates reaches only 88.3% and 85.7% respectively, 
although large quantities of collector and depressant are used. In addition, the grades of Pb and Zn in 
these concentrates are significantly diluted due to the misreporting of pyrite in the concentrates (Yang 
et al., 2018a). There are two reasons for this problem. One is the competitive adsorption of pyrite for the 
collector, which can decrease the concentration of xanthates available for galena and sphalerite. This 
decrease in the xanthate concentration will reduce the floatability of sulfide minerals (Somasundaran 
and Wang, 2006). The other reason is that the mass production of ferric or ferrous ions in pulp is caused 
by the surface oxidation of pyrite under alkaline conditions. As a result, the floatability of sulfide 
minerals decreases due to the adsorption of ferric or ferrous hydroxides on the surface (Owusu et al., 
2014; Owusu et al., 2015). 

In addition to the above two reasons, some studies have suggested that galvanic interactions 
between sulfide minerals may be another important factor affecting the selective flotation of sulfide 
minerals when complex ores have a high pyrite content (Chopard et al., 2017; Aikawa et al., 2020). 
According to the difference in the rest potential, the common sulfide minerals can be classified in the 
following increasing order, ZnS < PbS < CuFeS2 < FeS2, and galvanic interactions will occur when two 
minerals with different rest potentials come in contact (Liu et al., 2008; Santos et al., 2016). In galvanic 
interactions, the mineral with a lower rest potential will act as the anode, and surface oxidation will be 
promoted. The mineral with a higher rest potential will act as the cathode, and surface oxidation will 
be inhibited (Yang et al., 2018a; Yang et al., 2018b; Lu et al., 2019). The galvanic interaction between 
sulfide minerals can influence the surface characteristics and flotation behavior of minerals to a certain 
extent, as illustrated by Fig. 1. 

 
Fig. 1. Schematic diagram showing the galvanic interactions between sulfide minerals: (a) sulfide mineral alone 

and (b) galvanic interactions 

However, many studies on the galvanic interactions between sulfide minerals mainly focus on their 
effect on the surface characteristics and flotation behavior of valuable minerals (e.g., chalcopyrite, 
galena, and sphalerite), and less attention is given to the alteration of pyrite after the galvanic 
interaction. In addition, studying the galvanic interactions between pyrite and other sulfide minerals is 
meaningful to further understand the difficulty in the selective depression of pyrite during froth 
flotation. Therefore, the galvanic interaction between pyrite and sphalerite and its effects on the surface 
characteristics and flotation behavior of pyrite were investigated in this work. 

2.    Materials and methods 

2.1. Materials 

The highly mineralized pyrite and sphalerite samples used in this study were obtained from Yiliang 
Chihong Mining Co., LTD, Yunnan Province, China. After the manual removal of gangue minerals, 
such as quartz and calcite, the samples were ground in a porcelain ball mill and screened to obtain 
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minerals with the desired particle size. Then, the samples were stored in polyethylene bags with a N2 
atmosphere to prevent surface oxidation. The chemical compositions of the pyrite and sphalerite 
samples are listed in Table 1. X-ray diffraction (XRD) results indicated that the samples used in this 
study were of high purity. 

Table 1. Chemical compositions of the sphalerite and pyrite samples 

Elements Zn Fe S Pb SiO2 
Pyrite 0.01 52.64 46.24 0.17 0.22 
Sphalerite 64.37 0.94 33.71 0.15 0.81 

Potassium butyl xanthate (KBX, industrial purity) was used as the collector and further purified by 
the method described by Song (Song et al., 2000). Methyl isobutylcarbinol (MIBC) was used as the 
frother. HCl and NaOH (analytical purity) from Tianjin No. 3 Chemical Reagent Factory were used as 
pH adjustors at concentrations of 0.01 mol/L, and ultrapure water with a resistivity of 18.25 MΩ/cm−1 
was used in all of tests. 

2.2.    Methods 

2.2.1. Micro-flotation 

Micro-flotation tests were carried out in an XFG flotation machine (Wuhan Exploring Machinery Plant, 
Hubei, China) with a volume of 40 ml and an impeller speed of 1800 rpm. A 4 g mineral sample with a 
particle size of -0.074 mm to +0.048 mm was used for each flotation. In the mixed mineral system, a total 
of 4.0 g mineral mixtures with different proportions of pyrite and sphalerite were used. The sample was 
first mixed with 40 ml of deionized water, and the pH was adjusted using the 0.01 mol/L HCl and 
NaOH solutions. After that, the KBX collector and MIBC frother were added and conditioned for 3 min 
and 1 min, respectively. Finally, the suspension was allowed to float for 3 min. The floating and 
nonfloating particles were collected, dried and assayed for the recovery calculation. All tests were 
repeated three times under the same conditions, and the recovery reported in this work is the average. 

2.2.2. Collector adsorption tests 

The adsorption of the KBX collector on the mineral surface was measured using a UV/Vis 
spectrophotometer (UV-1800, Shanghai Qinghua Instruments Co., Ltd., Shanghai, China). First, a 
mineral sample was added to a 100 ml reaction vessel with 40 ml of deionized water, and the pH was 
adjusted by the HCl and NaOH solutions. Then, the KBX collector was added and conditioned for 3 
min. At the end of conditioning, the suspension was quickly transferred to a high-speed centrifuge and 
separated at 3500 rpm for 3 min. After separation, the supernatant was subjected to the analysis of KBX 
concentration using a UV/Vis spectrophotometer. At the maximum adsorption peak of 301 nm, the 
concentration of KBX had a linear relationship with the absorbance of KBX (as shown in Fig. 2), and the 
concentration of KBX could be calculated from this standard curve. 

 
Fig. 2. Absorbance of KBX as a function of the KBX concentration 
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2.2.3. Voltammetry measurement 

Cyclic voltammetry was measured by using an electrochemical workstation (Zahner IM 6, Germany). 
A traditional three-electrode system consisting of a working electrode, counter electrode (platinum 
electrode with an area of 1.0 cm2), and reference electrode (Ag/AgCl electrode, 3.0 mol/L KCl) was 
used. The pyrite electrode was cut from a highly mineralized specimen with a working area of 1.0 cm2 
as described by Qin (Qin et al., 2015b). Due to the low conductivity of sphalerite, a sphalerite CPE 
(carbon paste electrode) was used in this study. The electrode was prepared by carefully mixing the -
0.038 mm sphalerite particles with graphite powder in an agate mortar, and weight proportions of 80% 
sphalerite and 20% graphite powder were used. After homogenization, a small amount of liquid 
paraffin was added and quickly homogenized by using a glass rod. Then, the pastes were quickly 
compressed by a preforming machine to form a flake with a radius of 0.5 cm. After storage in a N2 
atmosphere for 24 hours, the flake was encapsulated in a glass tube with epoxy resin and connected 
with copper wire. 

To investigate the effect of galvanic interactions on the electrochemical behavior of pyrite, pyrite was 
electrochemically connected with the sphalerite CPE by using conductive silver adhesives, and only 
two sides were in contact with the solution (Qin et al., 2015a). The area ratio of the pyrite and sphalerite 
electrodes exposed to solution was 5:1, and the coupled electrode is illustrated in Fig. 3. 

 
Fig. 3. Schematic diagram showing the coupled sphalerite and pyrite electrode 

Cyclic voltammetry tests were carried out at a sweep rate of 10 mV/s, and the solution used in the 
electrochemical measurements was a buffer solution. After each measurement, a fresh surface was 
created by polishing the working areas with abrasive paper. 

2.2.4. XPS surface analysis 

An X-ray photoelectron spectrometer (PHI500, ULVAC-PHI, Kanagawa, Japan) was employed to 
identify the elements and chemical valence state of the mineral surface. For the mixed mineral system, 
the sample was prepared by using the following procedure. The 0.5 × 0.5 × 0.2 cm3 pyrite block was 
wet-polished using abrasive paper to produce a fresh surface. Then, the pyrite was washed with 
deionized water and immersed quickly in the specified solution in the absence or presence of -0.038 mm 
sphalerite particles in solution. The surface subjected to XPS analysis was exposed to the solution, and 
the solution was stirred using a rotary shaker. After stirring, the pyrite block was taken and washed 
with deionized water at the same pH and dried in a vacuum environment. After that, the XPS 
measurement was conducted. 

3.    Results and discussion 

3.1. Effect of galvanic interactions on the floatability of pyrite 

Flotation tests were carried out to investigate the effect of galvanic interactions between pyrite and 
sphalerite on the flotation behavior of pyrite when using KBX as the collector. The recovery of pyrite 
alone and mixed with different proportions of sphalerite as a function of pH are shown Fig. 4. 
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Fig. 4. Flotation behavior of pyrite as a function of pH in the presence and absence of sphalerite (10 mg/L KBX) 

It is evident from Fig. 4 that pyrite in the absence of sphalerite exhibited excellent floatability under 
acidic and weakly alkaline pH conditions (pH < 9.5) and poor floatability under strongly alkaline pH 
conditions (pH > 10.0), and the recovery decreased with increasing pH. However, compared with pyrite 
alone, the recovery of pyrite was slightly decreased in acidic and weakly alkaline pH ranges and 
increased significantly in the strongly alkaline pH range when sphalerite was present in the pulp. In 
addition, the higher the proportion of sphalerite in the pulp, the higher the flotation recovery for pyrite 
in the strongly alkaline pH range. It seemed that sphalerite in the pulp depressed the floatability of 
pyrite under acidic and weakly alkaline pH conditions and increased the floatability of pyrite under 
strongly alkaline pH conditions. 

In the mixed systems of pyrite and sphalerite, there was no competitive adsorption between pyrite 
and sphalerite for the KBX collector due to the adsorption of KBX on the unactivated sphalerite surface 
being negligible. The change in the floatability of pyrite could be attributed to the decreasing adsorption 
of KBX or the increasing surface oxidation of the pyrite surface, which improved the surface 
hydrophilicity of pyrite. However, many studies have suggested that the surface oxidation of pyrite will 
be alleviated after galvanic interactions because pyrite usually has the highest rest potential among 
these common sulfide minerals (Mu et al. 2016b; Moslemi and Gharabaghi 2017; Yang et al. 2018b). 
Therefore, the decreasing floatability of pyrite was mainly attributed to the decreasing adsorption of 
KBX on the pyrite surface. Mu and Urbano suggested that the galvanic interaction between sulfide 
minerals could influence the electrochemical reactivity of mineral surfaces and further influence the 
floatability of minerals (Urbano et al. 2007; Mu et al. 2018). 

3.2 Effects of galvanic interactions on the adsorption of KBX on the pyrite surface 

The adsorption of KBX on pyrite surfaces in the absence and presence of sphalerite was conducted to 
investigate the influence of galvanic interactions on xanthate adsorption, and the results are shown in 
Fig. 5. In Fig. 5, the y-axis represents the concentration differences of KBX before adsorption (C0) and 
after concentration (Ct). The higher the values of C0-Ct are, the more KBX adsorbed on the mineral 
surface. 

Fig. 5 shows that the concentration difference (C0-Ct) of KBX increased with increasing KBX 
concentration under pH = 7.3 and pH = 9.0 conditions for pyrite alone. The concentration difference 
was almost unchanged when the KBX concentration was more than 10 mg/L, which indicated that the 
adsorption of xanthate became saturated at this dosage of KBX. Under the strongly alkaline condition 
of pH = 12, the adsorption of KBX on the pyrite surface was significantly decreased due to the serious 
surface oxidation and competitive adsorption of OH-. In regard to sphalerite alone, the concentration 
difference of KBX was almost unchanged at all the studied pH conditions because of the poor response 
of the unactivated sphalerite to the xanthate collector (Zeng et al. 2019). Compared with pyrite alone, 
however, an obvious decrease in the concentration difference of KBX was observed in the mixed system 
under pH = 7.3 and pH = 9.0 conditions. Because the adsorption of KBX on the unactivated sphalerite 
surface was negligible, the decrease in the concentration difference of KBX in the mixed system was 
mainly  attributed  to  the  decreasing  adsorption  of  KBX on the pyrite surface. The results from Fig. 5 
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Fig. 5. Adsorption capacity of the KBX collector on the pyrite surface in the presence and absence of sphalerite 

suggested that the galvanic interactions between pyrite and sphalerite had a significant influence on 
theadsorption of xanthate on the pyrite surface, which could decrease the adsorption capacity of the 
KBX collector on the pyrite surface. However, at the acid and weakly alkaline pH condition, the pyrite 
has an excellently collectorless and collector-induced floatability, the decreased KBX adsorption on 
pyrite surface cannot give rise to the decrease in pyrite recovery. This result was consistent with the 
results from micro-flotation tests. The experimental investigation from Rao and Finch indicated that the 
adsorption of xanthate on the pyrite surface was significantly decreased from 1.18 to 0.45 monolayers 
when sphalerite was present in the pulp, and the decrease in the DO level and Eh in pulp was 
responsible for the decrease in the xanthate adsorption on the pyrite surface (Rao. and Finch, 1987). 

3.3. Cyclic voltammetry measurements 

Cyclic voltammetry scans were conducted to study the effect of galvanic interactions on the 
electrochemical behavior of pyrite in the presence of the KBX collector. For the purpose of comparison, 
the voltammetry scans of the pyrite and sphalerite electrodes were also obtained, and each test was 
conducted at a scanning rate of 10 mV/s and scanning ranges of -0.4 V to 0.8 V; the results are shown 
in Fig. 6. 

For the pyrite electrode (shown in Fig. 6(a)), an obvious oxidation current peak was observed at a 
scanning potential of 0.2 V, and the oxidation current increased as the potential became more positive. 
The peak with the initial potential of 0.2 V could be attributed to the oxidation of xanthates to 
dixanthogen on the pyrite surface, and the oxidation reaction can be expressed as Equation (1). 

2X% → X" + 2e%                                                                     (1) 
For Equation (1), the potential can be calculated by the Nernst equation (Equation (2)) (Pecina et al., 

2006). 

E,-/,/ = E,-/,/
y − 0.059log	[X%]                                                       (2) 

where E,-/,/
y  is the standard potential of Equation (1) and [X-] is the xanthate concentration. In regard 

to the butyl xanthate collector, the calculated potential value was approximately 0.182 V when 20 mg/L 
KBX was added, which was basically consistent with the results of the cyclic voltammetry tests. In 
regard  to  the  sphalerite electrode (shown in Fig. 6(b)), no obvious oxidation current peaks occurred in 
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Fig. 6. Cyclic voltammograms of pyrite (a), sphalerite (b), and pyrite coupled with sphalerite (c) and the 

comparison of current intensities in the range of 0.0 V–0.6 V (d) (pH = 9.18, 20 mg/L KBX) 

the scanning potential range of 0.0 V to 0.5 V, which indicated that the unactivated sphalerite reacted 
poorly with the KBX collector. This result was consistent with the results from the collector adsorption 
and flotation tests. When the scanning potential exceeded 0.5 V, an anodic current peak was detected 
on the sphalerite electrode. This peak could be attributed to the oxidation of S2- to S2O32- or SO42- on the 
sphalerite surface and can be expressed by Equation (3). 

ZnS + 6H"O	 → 	Zn(OH)" + SOB"% + 	10HD + 	8e%     Ey = 0.425 V                            (4) 
When pyrite was electrochemically coupled with sphalerite, a relatively weak oxidation current peak 

was observed at a scanning potential of 0.2 V (shown in Fig. 6(c)). The initial potential of the oxidation 
peak was uniform with the single pyrite electrode, representing the oxidation of xanthate to 
dixanthogen on the pyrite surface. However, it was found that the current intensity of the oxidation 
peak in the scanning potential range of 0.2 to 0.6 V significantly decreased when pyrite was 
electrochemically coupled with sphalerite. The current intensity comparison of the different electrodes 
is demonstrated in Fig. 6(d), and the results indicated that the electrochemical coupling of pyrite with 
sphalerite significantly decreased the oxidation current intensity of xanthate to dixanthogen on the 
pyrite surface. These results were consistent with the above flotation and collector adsorption tests; thus, 
the galvanic interaction between pyrite and sphalerite could decrease the adsorption of xanthate on the 
pyrite surface in acidic and weakly alkaline pH ranges. However, the floatability of pyrite was slightly 
decreased because pyrite had an excellent collectorless floatability in these acidic and weakly alkaline 
pH ranges (Aghazadeh et al., 2015; Ozun et al., 2019). 

3.4 XPS surface analysis 

The results from the flotation tests indicated that the floatability of pyrite clearly improved under 
strongly alkaline pH conditions (pH > 10) with the presence of sphalerite in pulp, but the collector 
adsorption tests showed that the adsorption of KBX on the pyrite surface significantly decreased due to 
the galvanic interaction between pyrite and sphalerite. To investigate the species formed on the pyrite 
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surface at a strongly alkaline pH and its variation after electrochemical interactions, a surface XPS 
analysis of pyrite in the presence and absence of sphalerite in the pulp was carried out; the results are 
shown in Fig. 7. 

 
Fig. 7. Fe 2p and S 2p spectra of the pyrite surface in the presence and absence of sphalerite (pH = 12.0) 

Fig. 7 shows that the Fe 2p spectrum of pyrite was composed of a strong Fe 2p3/2 peak at a binding 
energy of 708.60 eV and a weak Fe 2p1/2 peak at a binding energy of 721.70 eV. The Fe 2p spectrum of 
pyrite before and after galvanic interaction with sphalerite was almost unchanged, which indicated that 
the galvanic interaction between pyrite and sphalerite had no influence on the chemical status of the Fe 
atoms on the pyrite surface. However, the peak shape and position of the S 2p spectrum on the pyrite 
surface showed an obvious change due to the presence of sphalerite in the pulp, which demonstrated 
that the chemical status of the S atom on the pyrite surface was altered after the galvanic interaction. To 
identify the change in the S atom valance states on the pyrite surface, the high-resolution scans of S 2p 
were carried out, and the fitting peak of S 2p is shown in Fig. 8. In the XPS analysis of S, the S 2p spectra 
were fitted by using S 2p1/2 and S 2p3/2 doublets at a fixed 1:2 peak area ratio and a 1.18 eV energy 
separation (Chen et al., 2014). 

 
Fig. 8. S 2p fitting spectra of pyrite alone (a) and (b) after galvanic interaction with sphalerite 

In Fig. 8(a), the S 2p doublet with S 2p3/2 at a binding energy of 162.66 eV was identified as S""% from 
the pyrite surface or bulk, and the S 2p doublet with S 2p3/2 at a binding energy of 164.8 eV was 
attributed to S"O$"% , which was a hydrophilic oxidation product formed on the pyrite surface. In 
addition, a relatively weak S 2p doublet at a binding energy of 168.23 eV was detected on the pyrite 
surface, which represented the SOB"% oxidation product. The related oxidation reaction can be expressed 
by Equation (5) and Equation (6). 

FeS" + 1.5O" → Fe"D + S"O$"%                                                           (5) 
FeS" + 3.5O" + H"O → Fe"D + 2SOB"% + 2HD                                               (6) 

However, a broad peak with S 2p3/2 at a binding energy of 160.77 eV was detected on the pyrite 
surface in the presence of sphalerite in the pulp (as shown in Fig. 8(b)). The broad peak could be 
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attributed to S"%, which was a reduction product formed on the pyrite surface due to the reduction of 
S""%  to S"% . On the other hand, the S 2p doublet with the S 2p3/2 at a binding energy of 164.8 eV, 
represented the S"O$"% oxidation species, disappeared after the galvanic interaction. The XPS results 
indicated that under strongly alkaline pH conditions, the presence of sphalerite in the pulp alleviated 
the surface oxidation of pyrite due to the galvanic interaction between pyrite and sphalerite. As a result, 
the proportion of hydrophilic oxidation products on pyrite decreased, and the floatability of pyrite 
improved. These results were consistent with the results from the flotation tests and collector adsorption 
measurements. 

4. Conclusions 

The effect of the galvanic interaction between pyrite and sphalerite on the floatability and surface 
characteristics of pyrite was investigated in this work. By comparing the flotation behavior, xanthate 
adsorption, cyclic voltammetry results, and surface species of pyrite in the absence and presence of 
sphalerite, the following conclusions were drawn. 

(1) Under acidic and weakly alkaline pH conditions (4.0 < pH < 9.5), the floatability of pyrite 
decreased due to galvanic interactions between pyrite and sphalerite. The decrease in the adsorption 
capacity of the KBX collector on the pyrite surface was responsible for the decreased floatability. 

(2) When pyrite was electrically connected with sphalerite, the oxidation current of xanthates to 
dixanthogen on the pyrite surface significantly decreased. As a result, the adsorption of xanthates on 
the pyrite surface decreased. 

(3) Under strongly alkaline pH conditions, the galvanic interaction between pyrite and sphalerite 
inhibited the surface oxidation of pyrite because of the electrons received from the sphalerite surface, 
and the S"O$"%  oxidation product on the pyrite surface disappeared after the galvanic interaction. 
Therefore, the floatability of pyrite improved under strongly alkaline pH conditions after the galvanic 
interaction. 
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